Biomedical Image Analysis Library
The Biomedical Image Analysis Library is a poweful tool for developers, physicians, researchers, engineers, and so on.
Bial::FuzzyCMeans< D > Class Template Reference

#include <FuzzyCMeans.hpp>

Collaboration diagram for Bial::FuzzyCMeans< D >:
Collaboration graph

Public Member Functions

 FuzzyCMeans (const Feature< D > &new_feats, int new_clusters, float new_m, double new_epsilon, size_t nmax_iterations=30)
 Basic constructor. More...
 
Matrix< double > Run (bool verbose=false)
 Computes fuzzy c-means from 3D image pixels, according to the choosen feature vector. More...
 
Matrix< double > GetMembership () const
 Returns the matrix containing the fuzzy degree of membership computed by fuzzy C-Means. More...
 
void UniformCentroidInitialization ()
 Initializes centroid positions of the clusters with uniform space between them. More...
 
template<class O >
O & PrintIteration (O &os, int itr, double max_change) const
 Prints Fuzzy c-means iteration status to output stream os. More...
 

Detailed Description

template<class D>
class Bial::FuzzyCMeans< D >

Definition at line 27 of file FuzzyCMeans.hpp.

Constructor & Destructor Documentation

template<class D>
Bial::FuzzyCMeans< D >::FuzzyCMeans ( const Feature< D > &  new_feats,
int  new_clusters,
float  new_m,
double  new_epsilon,
size_t  nmax_iterations = 30 
)

Basic constructor.

Date
2012/Jun/25
Parameters
feats3D image feature vector.
clustersnumber of expected clusters.
mpower of degree of membership. m > 1. Suggested: 2
epsilontermination criterion. 0.0 < epsilon < 1.0. Values closer to 0.0, are more precise, but demands more computational effort.
Returns
none.
Warning
none.

Member Function Documentation

template<class D>
Matrix< double > Bial::FuzzyCMeans< D >::GetMembership ( ) const

Returns the matrix containing the fuzzy degree of membership computed by fuzzy C-Means.

Date
2012/Jun/26
Parameters
none.
Returns
The fuzzy degree of membership.
Warning
none.
template<class D>
template<class O >
O& Bial::FuzzyCMeans< D >::PrintIteration ( O &  os,
int  itr,
double  max_change 
) const

Prints Fuzzy c-means iteration status to output stream os.

Date
2012/Aug/20
Parameters
osan output stream.
itrNumber of the iteration.
max_changeMaximum change from last iteration.
Returns
The output stream.
Warning
none.
template<class D>
Matrix< double > Bial::FuzzyCMeans< D >::Run ( bool  verbose = false)

Computes fuzzy c-means from 3D image pixels, according to the choosen feature vector.

Date
2012/Jun/25
Parameters
verboseverbose mode.
Returns
The fuzzy degree of membership.
Warning
It is the simplest method that does not takes into account image inhomogeneity. If centroid positions are not initialized, void UniformCentroidInitialization() is called.
template<class D>
void Bial::FuzzyCMeans< D >::UniformCentroidInitialization ( )

Initializes centroid positions of the clusters with uniform space between them.

Date
2012/Jun/25
Parameters
none.
Returns
none.
Warning
none.

The documentation for this class was generated from the following file: