Biomedical Image Analysis Library
The Biomedical Image Analysis Library is a poweful tool for developers, physicians, researchers, engineers, and so on.
Bial::Filtering Namespace Reference

Functions

template<class D >
Image< D > AdaptiveAnisotropicDiffusion (Image< D > img, const DiffusionFunction *diff_func, float init_kappa, float radius=1.0)
 Computes and returns a filtered image by anisotropic diffusion. More...
 
template<class D >
Image< D > AnisotropicDiffusion (Image< D > img, const DiffusionFunction *diff_func, float kappa, size_t iterations, float radius=1.0)
 Computes and returns a filtered image by anisotropic diffusion. More...
 
template<class D >
void AnisotropicDiffusionThread (Image< D > &img, Image< D > &res, double integration_constant, const DiffusionFunction *diff_func, float kappa, Adjacency &adj, size_t thread, size_t total_threads)
 Threads implementation for anisotropic diffusion filter. More...
 
template<class D >
double Flow (const Image< D > &img, const DiffusionFunction *diff_func, float kappa, const size_t pxl, const Adjacency &adj)
 The flow is computed based the diffusion function. More...
 
template<class D >
Image< D > Gaussian (const Image< D > &img, float radius=2.0, float std_dev=2.0)
 Returns the median filtered image with the given radius. More...
 
template<class D >
Image< D > Mean (const Image< D > &img, float radius)
 Returns the mean filtered image with the given radius. More...
 
template<class D >
Image< D > Mean (const Image< D > &img, const Image< D > &msk, float radius)
 Returns the mean filtered image with the given radius restricted to non-zero mask pixels. More...
 
template<class D >
Image< D > Median (const Image< D > &img, float radius)
 Returns the median filtered image with the given radius. More...
 
template<class D >
void MedianThreads (const Image< D > &img, const Adjacency &adj, Image< D > &res, size_t thread, size_t total_threads)
 Multi-thread implementation of the median filtered image with the given radius. More...
 
template<class D >
float EdgeRegionKappa (const Image< D > &source, const Image< D > &mask, const DiffusionFunction *diff_func, float radius)
 Finds the best edge kappa to filter source image. More...
 
template<class D >
float FlatRegionKappa (const Image< D > &source, const Image< D > &mask, const DiffusionFunction *diff_func, float radius, float kappa)
 Finds the best flat kappa to filter source image. More...
 
template<class D >
Image< D > OptimalAnisotropicDiffusion (Image< D > img, const DiffusionFunction *diff_func, float radius, float conservativeness)
 Threads implementation for anisotropic diffusion filter. More...
 
template<class D >
Image< D > OptimalAnisotropicDiffusion (Image< D > img, const DiffusionFunction *diff_func, float radius, float conservativeness, const Image< D > &canny, const Image< D > &backg)
 Threads implementation for anisotropic diffusion filter. More...
 

Function Documentation

template<class D >
Image< D > Bial::Filtering::AdaptiveAnisotropicDiffusion ( Image< D >  img,
const DiffusionFunction diff_func,
float  init_kappa,
float  radius = 1.0 
)

Computes and returns a filtered image by anisotropic diffusion.

Date
2013/Nov/18
Parameters
imgInput image.
diff_functiondiffusion function.
init_kappainitial kappa constant to control the gradient range to be filtered.
radiusradius of the adjacency relation.
Returns
Returns filtered image by anisotropic diffusion.
Warning
none.
template<class D >
Image< D > Bial::Filtering::AnisotropicDiffusion ( Image< D >  img,
const DiffusionFunction diff_func,
float  kappa,
size_t  iterations,
float  radius = 1.0 
)

Computes and returns a filtered image by anisotropic diffusion.

Date
2013/Nov/18
Parameters
imgInput image.
diff_functiondiffusion function.
kappaconstant to control the gradient range to be filtered.
iterationsthe number of iterations.
radiusradius of the adjacency relation.
Returns
Returns filtered image by anisotropic diffusion.
Warning
none.
template<class D >
void Bial::Filtering::AnisotropicDiffusionThread ( Image< D > &  img,
Image< D > &  res,
double  integration_constant,
const DiffusionFunction diff_func,
float  kappa,
Adjacency adj,
size_t  thread,
size_t  total_threads 
)

Threads implementation for anisotropic diffusion filter.

Date
2013/Nov/27
Parameters
imgInput image.
resOutput image.
integration_constantConstant of integration based on adjacency size.
diff_functiondiffusion function.
kappaconstant to control the gradient range to be filtered.
adjAn adjacency relation.
threadThread number.
total_threadsNumber of threads.
Returns
none.
Warning
none.
template<class D >
float Bial::Filtering::EdgeRegionKappa ( const Image< D > &  source,
const Image< D > &  mask,
const DiffusionFunction diff_func,
float  radius 
)

Finds the best edge kappa to filter source image.

Date
2013/Nov/29
Parameters
sourceInput image.
maskInput mask with edge region.
diff_functiondiffusion function.
radiusAdjacency radius for diff_function.
Returns
Best edge kappa to filter source image.
Warning
none.
template<class D >
float Bial::Filtering::FlatRegionKappa ( const Image< D > &  source,
const Image< D > &  mask,
const DiffusionFunction diff_func,
float  radius,
float  kappa 
)

Finds the best flat kappa to filter source image.

Date
2013/Nov/29
Parameters
sourceInput image.
maskInput mask with edge region.
diff_functiondiffusion function.
radiusAdjacency radius for diff_function.
kappaBest edge kappa used for initialization.
Returns
Best flat kappa to filter source image.
Warning
none.
template<class D >
double Bial::Filtering::Flow ( const Image< D > &  img,
const DiffusionFunction diff_func,
float  kappa,
const size_t  pxl,
const Adjacency adj 
)

The flow is computed based the diffusion function.

Date
2013/Nov/18
Parameters
imgInput image.
diff_functiondiffusion function.
kappaconstant to control the gradient range to be filtered.
pxlreference pixel.
adjadjacency relation.
Returns
Returns the value of the flow of pxl with respect to its adjacents in adjacency adj.
Warning
none.
template<class D >
Image< D > Bial::Filtering::Gaussian ( const Image< D > &  img,
float  radius = 2.0,
float  std_dev = 2.0 
)

Returns the median filtered image with the given radius.

Date
2013/Nov/22
Parameters
imgInput image.
neighborhood_radiusradius of the neighborhood.
Returns
Median filtered image with the given radius.
Warning
none.
template<class D >
Image< D > Bial::Filtering::Mean ( const Image< D > &  img,
float  radius 
)

Returns the mean filtered image with the given radius.

Date
2014/Jan/08
Parameters
imgInput image.
neighborhood_radiusradius of the neighborhood.
Returns
Mean filtered image with the given radius.
Warning
none.
template<class D >
Image< D > Bial::Filtering::Mean ( const Image< D > &  img,
const Image< D > &  msk,
float  radius 
)

Returns the mean filtered image with the given radius restricted to non-zero mask pixels.

Date
2014/Jan/08
Parameters
imgInput image.
mskRestrictive mask.
neighborhood_radiusradius of the neighborhood.
Returns
Mean filtered image with the given radius restricted to non-zero mask pixels.
Warning
none.
template<class D >
Image< D > Bial::Filtering::Median ( const Image< D > &  img,
float  radius 
)

Returns the median filtered image with the given radius.

Date
2013/Aug/08
Parameters
imgInput image.
neighborhood_radiusradius of the neighborhood.
Returns
Median filtered image with the given radius.
Warning
none.
template<class D >
void Bial::Filtering::MedianThreads ( const Image< D > &  img,
const Adjacency adj,
Image< D > &  res,
size_t  thread,
size_t  total_threads 
)

Multi-thread implementation of the median filtered image with the given radius.

Date
2013/Aug/08
Parameters
imgInput image.
adjAdjacency relation.
resResulting image.
threadnumber of the thread.
total_threadstotal number of threads.
Returns
none.
Warning
none.
template<class D >
Image< D > Bial::Filtering::OptimalAnisotropicDiffusion ( Image< D >  img,
const DiffusionFunction diff_func,
float  radius,
float  conservativeness 
)

Threads implementation for anisotropic diffusion filter.

Date
2013/Dec/06
Parameters
imgInput image.
diff_functiondiffusion function.
radiusradius of the adjacency relation.
conservativenessConservativeness function. Expected values: 0.0 to 1.0. Lower values keep weak edges and higher values remove stronger noise incidence.
Returns
none.
Warning
none.
template<class D >
Image< D > Bial::Filtering::OptimalAnisotropicDiffusion ( Image< D >  img,
const DiffusionFunction diff_func,
float  radius,
float  conservativeness,
const Image< D > &  canny,
const Image< D > &  backg 
)

Threads implementation for anisotropic diffusion filter.

Date
2013/Dec/03
Parameters
imgInput image.
diff_functiondiffusion function.
radiusradius of the adjacency relation.
conservativenessConservativeness function. Expected values: 0.0 to 1.0. Lower values keep weak edges and higher values remove stronger noise incidence.
cannyCanny edges segmentation.
backgImage background segmentation.
Returns
none.
Warning
none.